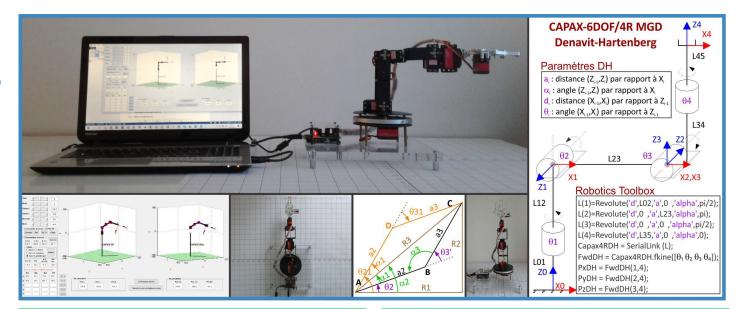
CAPAX-6DOF® Académique

Bras manipulateur


Géométrie inverse "déterministe" ou "redondante"

Systèmes Embarqués et Robotique Résidence Essadaka - Appt. E44 - Cité Ettahrir - 2042 Tunis - Tunisie Tél: (+216) 98269521 - Fax: (+216) 71258519 - web : www.infoconsult.tn

CAPAX-6DOF® est un bras manipulateur académique 6 ddl, 4 ou 5 articulations rotoïde, conçu pour le cours Robotique tous niveaux (licence, ingénieur et Master).

- * Modélisation selon convention DH ou DH modifié.
- Willisation de 2 bibliothèques : Symbolic Tool Box de Matlab et Robotic Tool Box de Peter Corke.
- Basculement entre simulation et monde réel avec validation des résultats par une planche graduée.
- La déclinaison du bras en deux versions 4R ou 5R présente un avantage indéniable pour l'étude du MGI:
 - Le modèle 4R admet uniquement 2 solutions (coude en bas ou coude en haut). Il est "déterministe".
 - Le modèle 5R admet un nombre de solution infini, ce qui ouvre une porte pour l'étude du contournement d'obstacle. Il est "redondant"
- 3 TPs (modélisation, MGD et MGI) prêt-à-l'emploi.

CAPAX-6DOF®: Caractéristiques générales

1. Pour l'enseignement

- **Système ouvert pour l'enseignement, les TPs ou pour faire de la recherche** : PFE, Master et thèse.
- **Simulation théorique avec validation pratique.**
- ***** Utilisation ou non de bibliothèque.
- Adaptable pour l'enseignement à distance
- Maquette ouverte : possibilité de développer d'autres exercices ou TPs autres que ceux prédéfinis.

2. Caractéristiques mécaniques

- * 6 DOF: 4/5 articulations rotoïde (servomoteur).
- # Hauteur totale du bras : 42.8cm / 48.9 cm
- Longueur du bras en rotation : 32cm / 38.1 cm
- * Base: plexiglass (15 mm).
- Planche graduée (36 cm par 36 cm).

3. Servomoteur

- **Alimentation**: 4.8/6V, **Couple**: 17/20 kgcm.
- **※ Angle de rotation**: 0 − 180°.
- *** Vitesse de rotation :** 0.16 0.18 sec/60° (sans charge).
- Mécanisme : engrenage interne en métal.

CAPAX-6DOF®: Approche pédagogique

1. Etude théorique

Préparation au préalable du TP mode "off" :

- * Téléchargement de l'énoncé à partir du site web.
- * Préparation de l'Etude théorique du TP et mise en place des équations mathématiques.
- * Préparation de l'algorithme de programmation.
- * Familiarisation avec de nouvelles instructions.
- * Programmation sur Matlab en fonction de la version.
- * Visite des forums.
- * Téléchargement et installation des bibliothèques : Téléchargement et méthodologie d'installation des bibliothèques en fonction de la version de Matlab.

2. Validation

- *** Validation de l'étude théorique par le tapis gradué :**
 - * MGD : Vérification des coordonnées cartésiennes de l'effecteur en fonction des angles des articulations.
 - * MGI : Vérification des différentes solutions des angles des articulations à partir des mêmes coordonnées cartésiennes de l'effecteur.

Descriptif des TPs prédéfinis (énoncé en libre téléchargement sur www.infoconsult.tn)

Titre	Objectif	Etude théorique	Etude pratique
TP1 : Modélisation du	* Méthodologie de placement des	# Identification des articulations et des	Calcul de la table DH pour chaque lien.
bras manipulateur	axes selon la convention Denavit-	liens.	Calcul de la matrice de transformation
	Hartenberg (DH) et Khalil-		homogène pour chaque articulation.
	Kleinfinger, encore appelée Denavit-	chaque articulation.	Calcul de la matrice de transformation
	Hartenberg modifiée (DH_m).	* Pour chaque lien i, calcul des coefficients	homogène globale qui permet le calcul
	Calcul des matrices homogènes pour	θ_i , d_i , a_i et α_i .	des coordonnées de l'effecteur par
	chaque articulation.		rapport à la base.
TP2 : MGD : Modèle	Calcul des coordonnées de	Wtilisation de la bibliothèque Matlab	Calcul des coordonnées de l'effecteur
Géométrique Direct	l'effecteur par rapport à la base du	symbolic Toolbox(instruction	pour différentes valeurs des angles des
	bras manipulateur en fonction des	syms et sub)	articulations.
	angles des articulations et de la	* Utilisation de la bibliothèque Robotics	₩ Utilisation de l'interface graphique de
	longueur des liens.	Toolbox de Peter CORKE	Matlab pour afficher la posture du bras
		(instruction Revolute,	manipulateur.
		RevoluteMDH, SerialLink, fkine,	Walidation de la théorie sur le bras
		teach).	CAPAX-6DOF par exploitation de la
		₩ Utilisation de l'interface graphique de	planche graduée.
		Matlab.	
TP3 : MGI : Modèle	* Calcul des angles des articulations à	Méthode algébrique (géométrique)	# Implémentation du code sur Matlab
Géométrique Inverse	partir des coordonnées cartésiennes	Méthode analytique (méthode de PAUL).	pour chaque méthode.
	de l'effecteur et de la longueur des		Wérification réelle sur le bras
	liens.		manipulateur.
	* MGI déterministe (deux solutions).		
	* MGI redondant (plusieurs solutions).		haut" à partir de celle "coude en bas".

Résidence Essadaka – Appt. E44 – 2042 Cité Tahrir – Tunis – Tunisie

Tél: (+216) 98 269 521

mail: infoconsult.tn@gmail.com - web: www.infoconsult.tn